Distributed Computing for Autonomous On Board
Planning and Sequence Validations

Dr. Pierre F. Maldague,
Dr. Leon Alkalai,
Dr. Savio Chau,

Dr. Kar-Ming Cheung,
Mr. David Tong,

and

Mr. Adans Y. Ko

Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 91109
818-393-4813
adans.y.ko@jpl.nasa.gov

Abstract— We propose a new conceptual approach to
system-level autonomy that exploits in a synergistic
way recent breakthroughs in three specific areas:

1. Automatic generation of embeddable planning and
validation software A traditional Activity Plan

Generation Tool (APGEN) will be modified to a
lightweight version of a Mission Planning and
Validation Tool, that is suitable for insertion into the
Command and Data Handler (C&DH) subsystem of
an autonomous S/C. The embedded APGEN:-lite will
generate and validate science opportunities activities
in real time onboard. In result, it will optimize the
automatic delivery of science data to the gr

2. Integration of telecommunications forecaster and
planning tools. To integrate a ground based telecom

link analysis tool known as the telecommunications
forecaster predictor (TFP) to S/C environment by
taking advantage of APGEN-lite, that will make use
of advanced telecom technologies such adaptive
compression schemes.

3. Fault-tolerant assignment of computing tasks to

multiple processors. Because it is responsible for its
own planning and validation tasks, an autonomous
S/C has much higher computing requirements than a
conventional S/C. Therefore, a recently developed
high-speed scalable fault tolerant distributed avionics
architecture, which consists of two or more
processors connected to multiple sensors, actuators,
and science instruments by a high-speed, fault
tolerant bus network.

1. Introduction 1

2. System Autonomy 3

2.1 Planning and Scheduling.......................... 3
2.2 Onboard telecom automation scheme for
intelligent communicationscoevvvverennnn. 6
2.3 Fault-Tolerant Distributed Network for
On-Board Autonomous Sequence Control............ 8
3. Conclsion 9
4. References 10
5. Biography 11

1. INTRODUCTION

1. Automatic generation of embeddable planning and

validation software. Ground-based operations have

traditionally relied on multi-mission planning and

validation software , in particular the APGEN

planner (Figure 1) used by JPL missions like Cassini,

Odyssey, Deep Impact and MER, that can be easily

adapted to different missions through the use of

mission-specified text files. The breakthrough in this

area is that APGEN can be modified with little effort

s0 as to produce a lightweight version of itself.

(“APGEN-lite™) that is suitable for insertion into the

C&DH subsystem of an autonomous S/C. As a result,

we will validate a system that:

a) executes high-level requests from the ground

b) responds in real time to science opportunities

¢) optimizes the automatic delivery of science data
to the ground

d) dramatically reduces operations cost

2. Integration of telecommunications forecaster and
planning tools. Traditionally telecom planning,

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

mission planning, and science planning are
coordinated on the ground. The breakthrough is that
we have integrated a ground-based link analysis tool
known as the telecommunications forecaster
predictor (TFP), currently used by missions like Deep
Space 1, Cassini, Stardust. and Odyssey, with the
APGEN planner to automate link prediction analysis.
Our approach includes porting this integrated tool to
the S/C environment by taking advantage of APGEN-

more demanding computation needs Currently, in or
real-time avionics testbed, we have a 5 node
distributed system functionally executing VxWorks,
and application software.

The key autonomy-enabling feature of our approach
is the availability of each functional module and the
protocol that orchestrates the interaction between the

i

g&:’vm@ St

@ama ?%:,W'Mwm

im(\‘&ﬂ(«m%

Figure 1: Apgen

lite and by developing an embedded version of the
TFP tools that eliminates dependencies on the
workstation environment such as graphics-oriented
modeling tools in favor of self-contained support
libraries suitable for on-board usage.

3. Fault-tolerant assignment of computing tasks to
multiple processors. Because it is responsible for its

own planning and validation tasks, an autonomous
S/C has much higher computing requirements than a
conventional S/C. As a result, any hardware or
software failures will have devastating effects on the
mission. Therefore, the avionics architecture for
autonomy has to be much more fault-tolerant than the
traditional flight system design. The breakthrough
that we exploit in our approach is a recently
developed high-speed scalable fault tolerant
distributed avionics architecture (Figure 2), which
consists of two or more processors connected to
multiple sensors, actuators, and science instruments
by a high-speed, fault tolerant bus network.
However, this architecture can be expanded to
include up to 64 processors for missions that have

different modules, rather than the intrinsic
"intelligence" of any individual module. The
resulting benefit is that since our system architecture
has already been validated, we have limited
development risks to a single area, which is that of
porting software to the S/C environment. Because
this is a well-understood process, our approach
minimizes software development risks.

The flight validation needed for this technology is
how the system would behave upon real events in
actual flight envirnoment. The system will record
events and the response of the system. The
correctness and response time will be examined to
evaluate the effectiveness of the system. Although
our approach is based on recent breakthroughs as
outlined above, it is also conservative in the sense
that it takes full advantage of multi-mission, reusable
methodologies that are in use by a number of current
space missions. The technology validation that is
proposed here will therefore result in tools that are

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

immediately usable by future missions thanks to the
built-in adaptability of each technology module.

2.1 Planning and Scheduling

P
1 Controller

Figure 2: High-speed scalable fault tolerant distributed avionics architecture

2. SYSTEM AUTONOMY

We focus our approach on System Level Autonomy
Software. The technology validation that is proposed
here will result in tools that will immediately be
usable by future missions thanks to the built-in
adaptability of each technology module. Each
module in our system has a well-defined
responsibility:

® the scheduling module selects science activities

from a list of things to do based on a well-defined
priority scheme;

® the validation module verifies that the proposed
schedule meets all flight and mission rules;

® the integrated telecom data rate prediction and
planning module takes advantage of up-to-date
ground and S/C information to maximize the rate
of data return;

e the data compression module matches the level of
compression to the available bandwidth;

e the re-planning module responds to faults
in real time by selecting a recovery
procedure that matches the signature of
the fault.

One of the most challenging technical issues in the
design of autonomous S/C is to design an on-board
planning system that (a) accepts high-level goals, (b)
reliably produces conflict-free plans, and (c) operates
with predictable efficiency. There are elegant
approaches to requirements (a) and (b), but the
limited experience that has been obtained so far
indicates that item (c), efficiency, is very difficult to
achieve. We believe that progress will continue to be
made in this area, and in fact two of us (Ko and
Maldague) have been awarded a NRA 755 by NASA
to explore the benefits of a mixed-initiative approach
to planning that would combine the practical
efficiency of APGEN with the elegant formalism of
the Remote Agent planner used on-board DS1 as part
of the RA Experiment.

However, the present approach does not require a
complete solution to the planning problem just
mentioned. Instead, we have taken a planning
methodology that has been proven on the ground, and
we have adapted it to the flight environment. In a
nutshell, we assume that at every point in time the
S/C has a valid sequence of commands in its
sequence memory. As an opportunity arises to
schedule a science observation or a downlink, an on-
board scheduler performs the incremental planning

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

work required to add the new activity to the
sequence. The rationale for only scheduling one
activity at a time is that the sequence that is held in
memory at any one time is always a fixed-time
sequence, in which the timing of each command is
precisely known except possibly for the duration of
the last command in the sequence (which may be
uncertain up to a specified timeout.) Such a sequence
can be modeled and validated with existing tools. If
we tried to schedule more than one event-driven
activity at a time, the set of all possible timing
combinations resulting from the expansion of these
activities into low-level commands would very
quickly grow to unmanageable proportions; to our
knowledge there is no methodology that currently
could be used for validating such sequences.

subject to approval by the rule checker (step 6 in the
Fig. 3). If the observation passes the validity test, it is
transferred to the Command and Data Handling
subsystem (steps 7 and 8 in the Fig. 3), otherwise it is
sent back to the Science subsystem (steps 7 and 3 in
the Fig. 3) for possible scheduling later on.

From an operations planning perspective, the first
step is to establish a baseline plan that is essentially
empty. It contains either a few or no science
activities; its only purpose is to provide a fallback
position that is known to be "safe" in case the fancy
scheduling system described below fails to deliver a
valid sequence. The baseline plan should contain a
minimum of telecom and maintenance activity to
guarantee that the ground does not lose contact with

Let us now explain in more
detail how the approach
works. Figure 3 below
displays the essential
components of the
proposed system; in the
next few paragraphs we
will briefly describe the
function of each
component.

H/W & S/IW
Fault
Detection
and'Handling

First we discuss the data
flow through the system;
then we will discuss the
events that take place from
the perspective of mission
operations. High-level
activities are generated on
the ground and uplinked to
the S/C via the gateway
(steps 1 and 2 in Fig. 3).
High-level activities
generally include science
observation candidates and
downlink activities; let us
concentrate on the former
as an example. Observation
candidates differ from
traditional sequences in that
they do not contain a

Fig. 3 High Level Commanding Data Flow

the S/C. The idea is to
provide the mission
with an opportunity to
recover from whatever
anomaly made it
necessary to revert to
the baseline plan.

The second step is to
provide the S/C with a
"list of things to do"
from which the on-
board planning system
can extract its short-
term plan. We will refer
to this list as the List of
Activity Candidates
(LAC) in the following.
The LAC contains two
basic types of activities:
science observations,
which have been
predefined by the
science team, and
downlink activities,
which reflect the
current DSN allocation
plan. Unlike traditional
sequences, both types of
activities can have a
non-trivial event-driven

specific start time; they only indicate a window of
opportunity during which they should be scheduled.
The candidates are therefore transferred to the
Science subsystem (step 3 in the Fig. 3). As soon as
the candidate's window overlaps the current planning
period, the parameters of the observation are
transferred to the planning subsystem (steps 4 and 5
in the Fig. 3) where whey will be tentatively
scheduled by the "pretty good planner" (PGP),

content. Science activities can be made conditional
upon the result of one or more previous observations,
such as the discovery of an unknown feature in a
remote sensing observation. Downlink activities will
be adjusted to reflect the amount of data currently
held in on-board memory, the priorities of the various
data sets to be downlinked, and the availability of
compression algorithms to reduce the amount of data
to be downlinked for each observation.

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

At this point, we need to explain the concept of an
"incremental" sequence. At any time T, the S/C has
in sequence memory a sequence of fixed-time
instructions that represent the "currently committed
sequence" or CCS. Initially, the CCS consists of the
baseline sequence only. As time goes on, the CCS is
built incrementally by adding activities from the LAC
one by one. The task of selecting activities is
assigned to the on-board scheduling engine, which
we describe next.

The on-board scheduling engine is responsible for
extracting potential activities from the LAC and
scheduling them one-by-one based on predefined
criteria similar to those currently used in ground-
based planning. Typically, these criteria tell the
scheduler (1) whether an activity from the LAC can
be scheduled given what is known about the current
state of S/C resources, and (2) at what time T' (> T)
the activity should start. If an activity does not satisfy
the criteria, the scheduler rejects it and extracts the
next candidate from the LAC. The scheduler
eventually finds an activity that passes the test. It
then expands the activity in terms of well defined
"expansion rules" that may take into account the
current state of the S/C resources, and adds the
resulting commands to the CCS, resulting in a new,
proposed sequence (PS) (note that in order to convert
the CCS into the PS, it may be necessary to remove
or postpone as well as add commands; this is not a
trivial issue but for simplicity we will ignore this
refinement since it does not fundamentally alter the
analysis.)

The planning engine that we actually propose to use
is a lightweight version of the APGEN planner
currently used in ground operations (see ref. [6]). We
are not proposing to port APGEN to the flight
environment. Instead, we want to use a technique that
was developed recently to address performance
problems that APGEN runs into when dealing with
extremely detailed resource models, which require
evaluating the state of the model a million times or
more. The technique we came up with consists in
using APGEN to convert its internal model (which
was "compiled" from an external, mission-specific
adaptation file) into executable code (currently C)
that can be compiled and linked to provide a mission-
specific, low-overhead version of APGEN itself
which we call "APGEN lite". In recent tests, the
lightweight version of APGEN runs between 10 and
100 times faster than the APGEN executable. Its
memory footprint is about 20 times smaller than
APGEN's, making it a suitable candidate for an on-
board embedded planner.

Note that from the perspective of planning theory,
APGEN as we propose to use it suffers from a basic
flaw: the plans that it produces are not guaranteed to
produce conflict-free sequences. The reason for this
is that the basic scheduling algorithm bases its
decision on a priori criteria, and does not do back-
tracking in case the criteria fail to capture all the
applicable flight rules and constraints. On the ground,
this is not a serious problem for two reasons:
o the plans scheduled by APGEN are always
double-checked by SEQGEN later on and any
conflicts can be remedied manually
® as a practical matter, it is generally possible to
come up with scheduling criteria that result in
conflict-free plans 99% of the time. In the
following, we will refer to a scheduler that achieves
this level of performance as a "pretty good planner”
(PGP)

As far as planning technology is concerned, our
approach is unabashedly empirical. If a fast, robust,
provably correct algorithm was available for
performing on-board planning, we would use it. In its
absence, we will use a PGP to do the job. We state
that a PGP can achieve a success rate of 99% for the
following reasons. In recent, actual mission
experience, the success rate of the scheduling
algorithm is a direct consequence of the conceptual
soundness of the APGEN adaptation that implements
it. The first instance of APGEN scheduling in
mission operations was going to be MPL ground
operations before the mission was interrupted. A
more recent example of such use of the scheduling
algorithm is the automatic generation of aerobreaking
sequences for Odyssey. In both cases, early
implementations of the algorithm may have
generated occasional conflicts, but after a few
iterations it has always proved possible to come up
with a reliable algorithm for conflict-free plan
generation.

Just in case we happen to stumble into the 1%
probability that the PGP will produce a plan with
conflicts, we will adjoin to the PGP a validation step
that provides the same functional level of constraint
checking as SEQGEN provides when run as part of
ground-based mission operations. Finally, to make
sure that the probability of finding a conflict in the
plan proposed by the PGP stays near 1%, we will
exercise a ground-based scenario generator (GSG) to
establish in a statistical sense that the PGP produces
enough good plans for a given list of things to do.
This will provide reassurance that most of the time

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

the PGP will be able to come up with a valid
sequence and the S/C won't be idle.

The next step consists in passing the PS from the
sequencer to the validation engine, which performs a
constraint check similar to that provided by SEQGEN
in conventional flight missions. The engine that we
actually propose to use is not SEQGEN (which was
developed for a workstation environment and is not
easily embeddable into S/C hardware) but a
"lightweight" version of it similar to the on-board
scheduler (the validation engine may end up being
another incarnation of APGEN lite, but that is not
important in the present discussion.) If the proposed
sequence passes the validation test, the PS is turned

position and velocity of the S/C relative to Earth, the
amount of time left before the next downlink, or the
precise amount of data available in the solid-state
recorder. It is therefore important to provide as much
computing power as possible to the scheduling and
validation engines, since from a science point of view
the S/C is essentially idle until they complete their
work. The synergy between our approach to
incremental planning and distributed computing is
therefore very real.

Of course, the computational performance issue
would be less important if there was no flexibility in
the duration of observations, for then planning could
proceed simultaneously with data taking. However,

Observation
N+1

Observation
N+3

Uncertainty in duration of
Observation N+1

CPU 2

CPU 1 —
. Planning Validation Planning
Planmng. Validation Observation Observation Observation
Obs;arvatlon Observation N+2 N+2 N+3
N+
N+1
l X/ i i
Validation
Observation

N+3

Compressing
Data for Obs N+1

Compressing
Data for Obs N

CPU 3

Observation
N+2 rejected

Compressing
Data for Ois N+3

v

Start Time
Obs N+1

Figure 4: Timing Diagram for incremental Activity Planning and Execution

Start Time
Obs N+3

Actuat End Time
Obs N+1

into the new CCS. If it does not pass the test, the
scheduler is so informed, and the scheduler is told to
look for an alternative plan.

The above description concludes our brief description
of one complete iteration of the process that we call
"incremental planning". If we now step back to
examine our approach from a higher-level
perspective, we end up with something like figure 4
below.

The figure suggests that computational tasks can be
distributed among several CPUs so as to provide the
performance required to plan activities "just in time".
Note that planning for Observation (N+2) cannot start
until Observation (N+1) has completed, since the
rules that need to be checked for Observation (N+2)
may depend on time-dependent variables such as the

many observations would benefit from the timing
flexibility that our approach provides. In addition,
telecommunication issues such as the possibility of
using Ka-band transmission depend in an essential
way on physical phenomena such as Earth weather,
which cannot be predicted far ahead of time. This is
the second synergistic aspect of our proposal.

2.2 Onboard telecom automation
scheme for intelligent
communications

This scheme performs telecom prediction and sub-
system level planning onboard the spacecraft.
Telecom prediction involves estimating the
communication bandwidth with a certain degree of
confidence. Telecom planning interfaces with the

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

system-level onboard mission planner and science

planner schemes to maximize the overall science

return of a mission, by:

1) providing link resource information to facilitate
spacecraft activity planning;

2) setting up the link between the transmitting and
the receiving ends;

3) receiving high-level science and communication
goals and priority information to coordinate the
onboard communications and signal processing.

Traditionally telecom planning, mission planning,

and science planning are coordinated on the ground.

The process is manually intensive and costly. The

ongoing onboard automation thrust requires that

these planning functions to be coordinated and
executed on the spacecraft. Intelligent
communications not only can maximize overall
science return, it will reduce the spacecraft mass,
power, recurring engineering costs and total life-
cycle costs of the mission,

Our approach is to develop an intelligent telecom
automation scheme that performs telecom prediction
and subsystem-level planning onboard the spacecraft.
The telecom predictor receives input from the system
level autonomy software and other subsystem
planners (navigation, attitude, power) to provide link
resource information to facilitate spacecraft activity
planning. The telecom planner sets up the link
between the transmitting and the receiving ends. It
also receives high-level science and communication
goals and priority information to coordinate the
onboard communications and signal processing
schemes.

Link prediction estimates the bandwidth capability,
usually in terms of supportable data rates, by taking
into account the transmitter and receiver
configurations, the spacecraft trajectory, onboard
antenna pointing angles, and the communications
geometry and media. Currently a ground-based link
analysis tool known as the telecommunications
forecaster predictor (TFP) exists. The TFP is a
mature, proven, versatile link analysis tool based on
MATLAB. The TFP tool is currently used by
missions like Deep Space 1, Cassini, Mars Global
Surveyor, Stardust, and Odyssey. To perform
onboard link prediction, part of the TFP tool needs to
migrate to the spacecraft. We propose to develop a
lightweight version of TFP (TFP_Lite) in the C and
VxWork environment that would fit well in the ST7
onboard architecture.

For onboard telecom planning, the future automated
spacecraft and constellation of spacecrafts must be

able to withstand a communications environment that
is more dynamic and uncertain. The onboard telecom
planner must be able to react to substantial bandwidth
fluctuation in the face of dynamic resource utilization
and rapid environmental changes, particularly
pointing angles and available spacecraft power.
Requests to update the predicted bandwidth can come
at any time. The telecom planner has to be as

optimal as possible, but must also be robust,
anticipating run time changes.

One approach to effectively utilize a dynamic
communication link is to execute multiple data rate
changes within a pass. Changing data rate during a
pass creates disruption to the physical channel, which
in turn causes temporarily data dropout due to
receiver out-of-lock. To maintain data continuity the
spacecraft requires either transmitting zero-fill data
or re-transmitting the data during the dropout period.
The multiple data rate change strategy is currently
being used by Cassini and DS1, and is executed with
traditional ground developed sequence. Though
manually intensive this operation mode increases
data return by up to 70% in some passes. We
propose to automate the multiple data rate change
strategy onboard.

A system level approach is to develop an onboard
automation scheme to coordinates several
communications and signal processing technologies:
link analysis, feature extraction, multi-resolution
transform, progressive transmission, and data
compression. This framework allows the use of
onboard intelligence and automation to direct the
signal processing techniques to maximize the overall
science return of a single satellite as well as a
constellation of satellites. We propose to use
existing communications and signal processing
components to the extent possible.

Traditional ground-based link prediction estimates
the bandwidth capability, usually in terms of
supportable data rates, by taking into account the
transmitter and receiver configurations (telecom), the
trajectories (navigation), the spacecraft antenna
pointing (attitude), and the communication geometry
and media (elevation angles and weather). In a
ground-based scheme, many quantities are either
assumed to be non-varying (for example, a specific
type of ground antenna and a specific onboard
configuration) or known for long periods in advance
(for example, a “good enough” trajectory estimate
that in turn determines station viewperiods and
geometry). The difficulty arises in making estimates
of items that are inter-dependent and often are
determined in a ground-based sequence process, such
as

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

1. spacecraft (and thus antenna) orientation as a
function of activity or time in the mission;

2. available spacecraft power to telecom as a
function of other subsystem and instrument
activity;

3. competing uses of the available downlink power
(such as telemetry and ranging or delta-DOR);

4. the ground stations allocated to the project as a
function of time

Prediction for intelligent onboard telecom planning
has to resolve the same dependencies. The onboard
prediction tool would have the same kinds of
quantities stored in its database, such as antenna gain
vs. off point angle and the modulation index values
for combinations of telemetry rates and ranging
modulation. In addition, it has access to the
equivalent of the trajectory to determine range and
station elevation angles. Through interaction of the
mission planner and science planner, telecom
prediction would be provided with

1. candidate pointing strategies to translate into
spacecraft antenna off point angles;

2. candidate spacecraft power profiles to translate
into RF downlink power;

3. the amount of ranging or delta-DOR activity
required for the mission phase
Development of the proposed telecom automation
scheme includes figuring out the interactions
(successive inputs and outputs) between it and the
mission planner and science planner to handle the
dependencies in an iterative fashion. Then the
onboard system devises a suitable (though perhaps
not optimum) telecom profile to go along with the
attitude control profile, the power profile, and the
instrument operation profile. The telecom predictor
would provide a final output: the profile of station
tracking time to accomplish the onboard determined
telecom profile. An alternative approach might be
that available station allocation profiles for the next
planning cycle (developed in the existing or a new
way on the ground) would be sent to the spacecraft.
The onboard predictor would use these profiles,
stored in a constraint file, in the same manner as it
would for requirements on the amount of ranging
data in the next planning cycle.

2.3 Fault-Tolerant Distributed
Network for On-Board
Autonomous Sequence Control

On-board autonomy poses new challenges to the
avionics architecture. First, on-board autonomy has

much higher computing requirements. A centralized
flight computer system is not likely to be able to meet
the demands. Second, since autonomy plays a more
critical role in mission than the conventional flight
software, any hardware or software failures that
impact the autonomy will have devastating effects to
the mission. Therefore, the avionics architecture for
autonomy has to be much more fault-tolerant than the
traditional flight system design.

In order to meet the demanding performance and
fault tolerance requirements, a high-speed scalable
distributed avionics architecture is proposed to
support on-board autonomy. This avionics
architecture consists of two processors connected to
multiple sensors, actuators, and science instruments
by a high-speed, fault tolerant bus network.
However, this architecture can be expanded to
include up to 64 processors for missions that have
more demanding computation needs. The bus
network consists of dual IEEE 1394 buses and two
12C buses. The IEEE 1394 bus is a multi-master bus
that is capable to transfer data at 100, 200, or 400
Mbps. It can accommodate up to 64 nodes, each of
which is either a computer or a microcontroller. The
IEEE 1394 bus can guarantee on-time delivery of
messages with the isochronous transaction and
guarantees reliable delivery with the asynchronous
transaction. The IEEE 1394 bus has adopted a tree
topology and susceptible to branch node failure.
Therefore, a redundant IEEE 1394 is used to backup
the primary IEEE 1394 bus. The nodes of the two
buses are connected in such a way that any node or
link failure will not affect both buses. In addition,
two I2C buses are used to facilitate the diagnostics
and “repair” of the failures in the IEEE 1394 bus.

Every node has a primary role in the system related
to the type of equipment that is controlled by the
node. On the other, the processor or microcontroller
in each node usually has more performance than
required by its primary role. These performance
margins can be used to share the workload of the
primary flight computer, such as performing non-real
time computations (e.g., sequence planner) for the
autonomy. If it is necessary, more computers can be
added to the bus network to further enhance the
system performance. It is the plan of this proposal to
investigate the technique to balance the workload
dynamically, so that system resources can be used
more efficiently.

Furthermore, this architecture has many fault
tolerance provisions. These provisions will target at
the general failure modes of the avionics system. In

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

general, failure modes occurred in an avionics system
can be categorized into three classes: crash, delay,
and arbitrary failure. In the crash failure mode, a
node will fail to respond to any input. The delay
failure mode will respond to external input but the
responses fail to meet the deadline. The arbitrary
failure mode will also respond to external input but
the response is erroneous. All these failure modes can
be caused either by hardware, software, or the
environment.

The crash failure mode can easily be detected by the
total lack of response within a time limit. The
strategy to recover from this kind of failure is to first
reset the processor or microcontroller of the failed
node. This would eliminate transient faults caused by
software or environment (e.g., single event upset). If
the reset fails, then the failure is most probably
caused by hardware. The most effective remedy is to
shut down the power of the failed node and
redistribute its workload to other nodes. The delay
failure mode can be detected by checking the delays
of each response. If the delays would cause the
execution of the sequence fail to meet deadline, then
an alternative sequence will be invoked. If the
alternative sequence also fails to meet the deadline,
then the fault most likely has also occurred in
hardware. Therefore, the workload of the failed node
will be redistributed to other nodes. A similar
recovery strategy can be used for the arbitrary mode,
except that this failure mode has to be detected by
on-board validation of the sequence.

One advantage of the IEEE 1394 bus is that the node
failures in general will not cause a bus network
failure since the physical layer of the network is kept
alive by the power line in the cables. Therefore, the
physical layer of the failed node can continue to pass
on messages although its processor has failed.
However, there are faults that would affect the
physical layer in a node. When this type of faults
happens, the tree topology of the IEEE 1394 bus will
be destroyed. Therefore, the bus network needs a
strategy to recover from network faults. This is
explained in the following.

When a fault is detected in the primary IEEE 1394
bus, simple recovery procedures such as retry and bus
reset will first be attempted. If the simple procedures
cannot correct the problem, then all the workload will
be transferred to the backup IEEE 1394 buses. Then,
the system can have more time to diagnose the failed
IEEE 1394 bus while the backup bus is performing
the normal system operations. The diagnostic and
“repair” of the failure are conducted with the
assistance of the I2C bus. During the diagnostics, the

root node of the IEEE 1394 bus will first send
messages on the I12C bus to interrogate the health of
all other nodes and the conditions of their
connectivity. All nodes are supposed to respond to
the root node’s request via the I2C bus. If a node
does not respond or if it indicates any physical
connection failures, then the root node will send
commands on the I2C bus to command the other
nodes to reconfigure their links to bypass the failed
node. After the failed node or connection is removed,
the repaired IEEE 1394 bus will become the backup.
Based on analysis, the bus network shown in Figure 1
can tolerate a minimum of three node or link failures.

3. CONCLSION
Our approach will validate the following four areas:

1. Breadth and Generality of Autonomous High-
Level Commanding. We will validate the on-board

sequence planning and validation system by
performing specific tasks and verifying that the
performance targets have been met. The tasks chosen
for this purpose will be:

Long-term planning: the on-board planning system
will plan a one-month worth of prioritized science
activities. Because our approach focuses on science
observations that are event-driven, the result of this
planning exercise will consists of a "plausible
scenario” rather than an actual sequence to be
executed on-board. The scenario will simulate the
values of parameters that will only be known at
execution time to come up with a complete sequence.

Short-term planning: the on-board system will
perform incremental planning of science observations
and telecom activities as described in the body of this
proposal. The performance target for incremental
planning will be consistent with the ST7 target of 5
seconds of planning time for science activities that do
not affect critical times and 60 seconds of planning
time for creating a plan in response to a new high-
level request.

The on-board rule checker will be responsible for
checking the flight rules, operational constraints, and
resource contention in real time. The performance of
the rule checker during normal operations will be
monitored in terms of both its CPU time
requirements and the accuracy of its conclusions.

2. Onboard Telecommunication Planning

We will conduct in flight validation of on-board
downlink planning. The spacecraft will initiate
communication activities to maximize the overall
data return.

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

3. Fault tolerance and re-assignment of computing
tasks to different CPUs. The ability of the fault

detection and recovery subsystem to deal with
hardware and software faults will be tested in a
ground-based simulation environment (testbed) and
verified in flight.

4. Adaptability to future missions. The methodology

used in the course of implementing the present
proposal will be documented following the same
guidelines as those that apply to multi-mission
ground data software. The documentation will
include the actual adaptation files that were used to
customize the planning, validation and telecom tools
to the specific mission environment. It will also
include the test design documents that will have been
used to verify the performance of all subsystems.
This process will pave the way for the re-use of our
technology by the systems engineering teams of
future missions.

4. REFERENCES

[1] S. N. Chau, L. Alkalai, A. T. Tai, and J. B.
Burt, “Design of a fault-tolerant COTS-
based bus architecture,” IEEE Trans.
Reliability, vol. 48, pp. 351-359, Dec. 1999.

[2] S.N. Chau and M. Lang, “A Multi-Mission
Testbed For Advanced Technologies,”
Innovative Approaches to Outer Planetary
Exploration Workshop, 2001-2020, Lunar
and Planetary Institute, Houston, Texas,
February, 2001

[3] S. Chau et al, “The Implementation of a
COTS Based Fault Tolerant Avionics Bus
Architecture”, in the Proceedings of the
Aerospace 2000 Conference, Big Sky,
Montana, Mar. 2000

[4] S. N. Chau, L. Alkalai, and A. T. Tai, "A
multi-layer methodology for applying COTS
in mission-critical systems," in Proceedings
of the IEEE Workshop on Application-
Specific ~ Software Engineering and
Technology (ASSET 2000), (Dallas, TX),
pp. 70-76, Mar. 2000.

[5] T. Tai, S. N. Chau, and L. Alkalai, "COTS-
based fault tolerance in deep space:
Qualitative and quantitative analyses of a
bus network architecture,” in Proceedings of
the 4th IEEE International Symposium on
High Assurance Systems Engineering,
(Washington, DC), pp. 97-104, Nov. 1999.

[6] Maldague, P., Ko, AY., Page, D.N. and
Starbird, T.W., 1997, “APGEN: A Multi-

10

[7]

(8]

(]

Mission Semi-Automated Planning Tool”, in
First International Workshop on Planning
and Scheduling for Space Exploration and
Science.

Maldague, P., Ko, A.Y., “JIT Planning: an
Approach to Autonomous Scheduling for
Space Missions”, in March, 1999, IEEE
Aerospace Conference, Aspen, Colorado

K. Cheung, A. Makovsky, F. Taylor,
"Telecommunications Analysis Service for
DS1 Planning and Operations," submitted to
IEEE Aerospace 2000 Conference, March
2000.

Cheung, K.-M., "A Simple Algorithm for
Automated High-Efficiency Tracking,"

TDA PR 42-130, April-June 1997, pp. 1-7,
August 15, 1997.

{10} Cheung, K.-M., M. Belongie, and K. Tong,

"End-to-End System Consideration of the
Galileo Image Compression System," TDA
PR 42-126, April-June 1996, pp. 1-11,
August 15, 1996.

[11}Feria, Y., and K.-M. Cheung, "Seamless

Data-Rate Change Using Punctured
Convolutional Codes for Time-Varying
Signal-to-Noise Ratios," TDA PR 42-120,
October-December 1994, pp. 18-28,
February 15, 1995.

[12]Statman, J. I., K.-M. Cheung, T. H.

Chauvin, J. Rabkin, and M. L. Belongie,
"Decoder Synchronization for Deep Space
Missions," TDA PR 42-116, October-
December 1993, pp. 121-127, February 15,
1994,

[13]K. Cheung and K. Tong, / Proposed Data

Compression Schemes for the Galileo S-
Band Contingency Mission," Proceedings of
the 1993 Space and Earth Science Data
Compression Workshop, Snowbird, Utah,
pp. 99{110, April 2, 1993}.

[14] TFP: K. K. Tong and R. H. Tung, “A Multi-

mission Deep Space Telecommunications
Analysis Tool: Telecom Forecaster
Predictor,” IEEE Aerospace 2000, “Gateway
to 21* Century Technology,” Big Sky,
Montana, March 18-25, 2000

DISTRIBUTED COMPUTING FOR AUTONOMOUS ON BOARD PLANNING AND SEQUENCE VALIDATIONS

5. BIOGRAPHY

Dr. Savio N. Chau received his Ph.D. in computer
science from the University of California, Los
Angeles in 1989. He is a senior system engineer and
the task manager of the X2000 Future Deliveries
Project at the Jet Propulsion Laboratory. He is
currently developing scalable multi-mission avionics
system architectures and investigating techniques to
apply low-cost commercial bus standards in highly
reliable long-life spacecraft. His research areas
include scalable distributed system architecture, fault
tolerance system design, architecture modeling, and
rapid integration of intellectual properties on ASICs

Dr. Kar-Ming Cheung is a
Technical Group Supervisor in
the Communications Systems
Research Section (331) at JPL.
His group provides telecom
analysis support for JPL
missions, and develops the
operational telecom analysis and predict generation
tools for current and future JPL missions and the
DSN. He received NASA'’s Exceptional Service
Medal for his work on Gualileo’s onboard image
compression scheme. He was the Manager of the
Network Signal Processing Work Area of NASA’s
Deep Space Network (DSN) Technology Program.
He has authored or co-authored 6 journal papers
and over 20 conference papers in the areas of error-
correction coding, data compression, image
processing, and telecom system operations. Since
1987 he has been with JPL where he is involved in
research, development, production, operation, and
management of advanced channel coding, source
coding, synchronization, image restoration, and link
analysis schemes. He got his B.S.E.E. degree from
the University of Michigan, Ann Arbor in 1984, his
M.S. degree and Ph.D. degree from California
Institute of Technology in 1985 and 1987
respectively.

11

